Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Vaccine ; 41(42): 6146-6149, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37690874

RESUMEN

In a phase 2 safety and immunogenicity study of a chikungunya virus virus-like particle (CHIKV VLP) vaccine in an endemic region, of 400 total participants, 78 were found to be focus reduction neutralizing antibody seropositive at vaccination despite being ELISA seronegative at screening, of which 39 received vaccine. This post hoc analysis compared safety and immunogenicity of CHIKV VLP vaccine in seropositive (n = 39) versus seronegative (n = 155) vaccine recipients for 72 weeks post-vaccination. There were no differences in solicited adverse events, except injection site swelling in 10.3% of seropositive versus 0.6% of seronegative recipients (p = 0.006). Baseline seropositive vaccine recipients had stronger post-vaccination luciferase neutralizing antibody responses versus seronegative recipients (peak geometric mean titer of 3594 and 1728, respectively) persisting for 72 weeks, with geometric mean fold increases of 3.1 and 13.2, respectively. In this small study, CHIKV VLP vaccine was well-tolerated and immunogenic in individuals with pre-existing immunity. ClinicalTrials.gov Identifier: NCT02562482.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Vacunas de Partículas Similares a Virus , Vacunas Virales , Humanos , Fiebre Chikungunya/prevención & control , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Inmunogenicidad Vacunal , Método Doble Ciego
2.
Viruses ; 15(5)2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37243261

RESUMEN

The host targeting antiviral, UV-4B, and the RNA polymerase inhibitor, molnupiravir, are two orally available, broad-spectrum antivirals that have demonstrated potent activity against SARS-CoV-2 as monotherapy. In this work, we evaluated the effectiveness of UV-4B and EIDD-1931 (molnupiravir's main circulating metabolite) combination regimens against the SARS-CoV-2 beta, delta, and omicron BA.2 variants in a human lung cell line. Infected ACE2 transfected A549 (ACE2-A549) cells were treated with UV-4B and EIDD-1931 both as monotherapy and in combination. Viral supernatant was sampled on day three when viral titers peaked in the no-treatment control arm, and levels of infectious virus were measured by plaque assay. The drug-drug effect interaction between UV-4B and EIDD-1931 was also defined using the Greco Universal Response Surface Approach (URSA) model. Antiviral evaluations demonstrated that treatment with UV-4B plus EIDD-1931 enhanced antiviral activity against all three variants relative to monotherapy. These results were in accordance with those obtained from the Greco model, as these identified the interaction between UV-4B and EIDD-1931 as additive against the beta and omicron variants and synergistic against the delta variant. Our findings highlight the anti-SARS-CoV-2 potential of UV-4B and EIDD-1931 combination regimens, and present combination therapy as a promising therapeutic strategy against SARS-CoV-2.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Humanos , SARS-CoV-2 , Antivirales/farmacología
4.
Reprod Toxicol ; 114: 9-21, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36206921

RESUMEN

UV-4 (N-(9-methoxynonyl)-1-deoxynojirimycin) is a host-targeted antiviral agent, which targets mammalian proteins (endoplasmic reticulum glucosidases) rather than virally encoded proteins. This mechanism confers both broad-spectrum activity and low potential for generation of viral drug resistance mutations. Reproductive and developmental studies of UV-4 evaluated effects on fertility and early embryonic development in rats, embryo-fetal development in rats and rabbits, and pre- and postnatal development including maternal function in rats. All reproductive and developmental studies conducted achieved dose levels where parental toxicity (generally decreased body weight, decreased food consumption and adverse clinical signs) were observed. Toxicokinetic evaluations confirmed UV-4 crossed the placenta exposing fetal rats and rabbits in utero. Adverse findings in reproductive and developmental studies included decreases in sperm motility with histopathology correlates, visceral and skeletal malformations, changes in eye opening, air drop reflex, vaginal opening and preputial separation. The combined results of the fertility and early embryonic developmental study and pre- and postnatal study suggested that there may be an increased risk for male fertility. These effects are similar to those reported in pre-clinical studies of the structurally related drug Miglustat (N-butyl-1-deoxynojirimycin), therefore UV-4 may have risk of developmental or reproductive adverse outcomes in humans similar to existing approved agents in this drug class.


Asunto(s)
Reproducción , Motilidad Espermática , Embarazo , Femenino , Humanos , Masculino , Ratas , Conejos , Animales , Ratas Sprague-Dawley , Relación Dosis-Respuesta a Droga , Fertilidad , Peso Corporal , Mamíferos
5.
PLoS Negl Trop Dis ; 16(8): e0010636, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35939501

RESUMEN

BACKGROUND: UV-4 (N-(9'-methoxynonyl)-1-deoxynojirimycin, also called MON-DNJ) is an iminosugar small-molecule oral drug candidate with in vitro antiviral activity against diverse viruses including dengue, influenza, and filoviruses and demonstrated in vivo efficacy against both dengue and influenza viruses. The antiviral mechanism of action of UV-4 is through inhibition of the host endoplasmic reticulum-resident α-glucosidase 1 and α-glucosidase 2 enzymes. This inhibition prevents proper glycan processing and folding of virus glycoproteins, thereby impacting virus assembly, secretion, and the fitness of nascent virions. METHODOLOGY/PRINCIPAL FINDINGS: Here we report a first-in-human, single ascending dose Phase 1a study to evaluate the safety, tolerability, and pharmacokinetics of UV-4 hydrochloride (UV-4B) in healthy subjects (ClinicalTrials.gov Identifier NCT02061358). Sixty-four subjects received single oral doses of UV-4 as the hydrochloride salt equivalent to 3, 10, 30, 90, 180, 360, 720, or 1000 mg of UV-4 (6 subjects per cohort), or placebo (2 subjects per cohort). Single doses of UV-4 hydrochloride were well tolerated with no serious adverse events or dose-dependent increases in adverse events observed. Clinical laboratory results, vital signs, and physical examination data did not reveal any safety signals. Dose-limiting toxicity was not observed; the maximum tolerated dose of UV-4 hydrochloride in humans has not yet been determined (>1000 mg). UV-4 was rapidly absorbed and distributed after dosing with the oral solution formulation used in this study. Median time to reach maximum plasma concentration ranged from 0.5-1 hour and appeared to be independent of dose. Exposure increased approximately in proportion with dose over the 333-fold dose range. UV-4 was quantifiable in pooled urine over the entire collection interval for all doses. CONCLUSIONS/SIGNIFICANCE: UV-4 is a host-targeted broad-spectrum antiviral drug candidate. At doses in humans up to 1000 mg there were no serious adverse events reported and no subjects were withdrawn from the study due to treatment-emergent adverse events. These data suggest that therapeutically relevant drug levels of UV-4 can be safely administered to humans and support further clinical development of UV-4 hydrochloride or other candidate antivirals in the iminosugar class. TRIAL REGISTRATION: ClinicalTrials.gov NCT02061358 https://clinicaltrials.gov/ct2/show/NCT02061358.


Asunto(s)
Dengue , alfa-Glucosidasas , 1-Desoxinojirimicina/efectos adversos , Antivirales/farmacología , Área Bajo la Curva , Dengue/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Voluntarios Sanos , Humanos , alfa-Glucosidasas/metabolismo , alfa-Glucosidasas/uso terapéutico
6.
Lancet Infect Dis ; 22(9): 1343-1355, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35709798

RESUMEN

BACKGROUND: Chikungunya virus (CHIKV) disease is an ongoing public health threat. We aimed to evaluate the safety and immunogenicity of PXVX0317, an aluminium hydroxide-adjuvanted formulation of a CHIKV virus-like particle (VLP) vaccine. METHODS: This randomised, double-blind, parallel-group, phase 2 trial was conducted at three clinical trial centres in the USA. Eligible participants were healthy CHIKV-naïve adults aged 18-45 years. Participants were stratified by site and randomly assigned (1:1:1:1:1:1:1:1) to one of the eight vaccination groups using a block size of 16. Group 1 received two doses of unadjuvanted PXVX0317 28 days apart (2 × 20 µg; standard); all other groups received adjuvanted PXVX0317: groups 2-4 received two doses 28 days apart (2 × 6 µg [group 2], 2 × 10 µg [group 3], or 2 × 20 µg [group 4]; standard); group 4 also received a booster dose 18 months after the first active injection (40 µg; standard plus booster); groups 5-7 received two doses 14 days apart (2 × 6 µg [group 5], 2 × 10 µg [group 6], or 2 × 20 µg [group 7]; accelerated); and group 8 received one dose (1 × 40 µg; single). The primary endpoint was the geometric mean titre of anti-CHIKV neutralising antibody on day 57 (28 days after the last vaccination), assessed in the immunogenicity-evaluable population. Additionally, we assessed safety. This trial is registered at ClinicalTrials.gov, NCT03483961. FINDINGS: This trial was conducted from April 18, 2018, to Sept 21, 2020; 468 participants were assessed for eligibility. Of these, 415 participants were randomly assigned to eight groups (n=53 in groups 1, 5, and 6; n=52 in groups 2 and 8; n=51 in groups 3 and 7; and n=50 in group 4) and 373 were evaluable for immunogenicity. On day 57, serum neutralising antibody geometric mean titres were 2057·0 (95% CI 1584·8-2670·0) in group 1, 1116·2 (852·5-1461·4; p=0·0015 vs group 1 used as a reference) in group 2, 1465·3 (1119·1-1918·4; p=0·076) in group 3, 2023·8 (1550·5-2641·7; p=0·93) in group 4, 920·1 (710·9-1190·9; p<0·0001) in group 5, 1206·9 (932·4-1562·2; p=0·0045) in group 6, 1562·8 (1204·1-2028·3; p=0·14) in group 7, and 1712·5 (1330·0-2205·0; p=0·32) in group 8. In group 4, a booster dose increased serum neutralising antibody geometric mean titres from 215·7 (95% CI 160·9-289·1) on day 547 to 10 941·1 (7378·0-16 225·1) on day 575. Durability of the immune response (evaluated in groups 1, 4, and 8) was shown up to 2 years. The most common solicited adverse event was pain at the injection site, reported in 12 (23%) of 53 participants who received the unadjuvanted vaccine (group 1) and 111 (31%) of 356 who received the adjuvanted vaccine. No vaccine-related serious adverse events were reported. INTERPRETATION: PXVX0317 was well tolerated and induced a robust and durable serum neutralising antibody immune response against CHIKV up to 2 years. A single 40 µg injection of adjuvanted PXVX0317 is being further investigated in phase 3 clinical trials (NCT05072080 and NCT05349617). FUNDING: Emergent BioSolutions.


Asunto(s)
Fiebre Chikungunya , Vacunas de Partículas Similares a Virus , Adyuvantes Inmunológicos , Adulto , Hidróxido de Aluminio , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Método Doble Ciego , Humanos , Inmunogenicidad Vacunal
7.
Int J Toxicol ; 41(3): 182-200, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35426748

RESUMEN

The iminosugar UV-4 is a broad-spectrum antiviral drug candidate with activity in vitro and in vivo against multiple, diverse viruses. The toxicological profile of UV-4, dosed as the hydrochloride salt, was evaluated in single-dose and repeat-dose oral toxicity studies in mice, rats, dogs, and non-human primates (NHP). No moribundity or deaths were associated with the drug up to the maximum tolerated dose. No treatment-related adverse effects were observed following single oral doses in dogs, rats, and mice up to 250, 400, 1000 mg/kg, respectively, and in NHP up to 180 mg/kg administered three times daily for 10 days. UV-4-related findings were generally seen at higher doses after 7- or 14-day exposure. The most common clinical pathology findings (increase in aspartate aminotransferase and decreased platelet count) were consistently found across species and each appeared dose related. The kidney, mesenteric lymph nodes, stomach including gastrointestinal tract, and thymus were identified as target organs in mice, rats, and dogs. In 14-day repeat-dose toxicology studies in mice and dogs conducted in compliance with Good Laboratory Practice regulations, the dog was considered to be the most sensitive species to UV-4 exposure based on the treatment-related adverse effects noted in the identified target organs. The results of these studies demonstrate the safety profile of UV-4 hydrochloride and supported the selection of starting and maximal doses for a single ascending dose first-in-human clinical study.


Asunto(s)
Antivirales , Drogas en Investigación , Administración Oral , Animales , Antivirales/uso terapéutico , Antivirales/toxicidad , Perros , Drogas en Investigación/toxicidad , Dosis Máxima Tolerada , Ratones , Ratas
8.
Int J Toxicol ; 41(3): 201-211, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35227115

RESUMEN

UV-4 (N-(9-methoxynonyl)-1-deoxynojirimycin) is a broad-spectrum antiviral drug candidate with demonstrated activity in vitro and in vivo against multiple, diverse viruses. Nonclinical safety pharmacology studies were conducted to support the filing of an Investigational New Drug (IND) application. Preliminary in vitro pharmacology testing evaluating potential for binding to "off-target" receptors and enzymes indicated no significant liability for advanced development of UV-4. The safety pharmacology of UV-4 was evaluated in the in vitro human ether-à-go-go-related gene (hERG) assay, in a central nervous system (CNS) study in the mouse (modified Irwin test), in a respiratory safety study in conscious mice using whole body plethysmography, and in a cardiovascular safety study in conscious, radiotelemetry-instrumented beagle dogs. There were no observed adverse treatment-related effects following administration of UV-4 as the hydrochloride salt in the hERG potassium channel assay, on respiratory function, in the CNS study, or in the cardiovascular assessment. Treatment-related cardiovascular effect of decreased arterial pulse pressure after 50 or 200 mg of UV-4/kg was the only change outside the normal range, and all hemodynamic parameters returned to control levels by the end of the telemetry recording period. These nonclinical safety pharmacology assessments support the evaluation of this host-targeted broad-spectrum antiviral drug candidate in clinical studies.


Asunto(s)
Sistema Cardiovascular , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Animales , Antivirales/toxicidad , Perros , Evaluación Preclínica de Medicamentos , Drogas en Investigación , Ratones , Telemetría
9.
Front Biosci (Landmark Ed) ; 27(1): 3, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35090308

RESUMEN

BACKGROUND: SARS-CoV-2 is the coronavirus responsible for the COVID-19 pandemic. Although it poses a substantial public health threat, antiviral regimens against SARS-CoV-2 remain scarce. Here, we evaluated the antiviral potential of UV-4B, a host targeting antiviral, against SARS-CoV-2 in clinically relevant human cell lines. METHODS: Cells derived from human lung (A549 cells transfected with human angiotensin converting enzyme 2 receptor (ACE2; ACE2-A549)) and colon (Caco-2) were infected with either a wild type or beta variant strain of SARS-CoV-2 and exposed to various concentrations of UV-4B. Supernatant was sampled daily and viral burden was quantified by plaque assay on Vero E6 cells. RESULTS: Therapeutically feasible concentrations of UV-4B inhibited the replication of the wild type strain in ACE2-A549 and Caco-2 cells yielding EC50 values of 2.694 and 2.489 µM, respectively. UV-4B's antiviral effect was also robust against the beta variant in both cell lines (ACE2-A549 EC50: 4.369 µM; Caco-2 EC50: 6.816 µM). CONCLUSIONS: These results highlight UV-4B's antiviral potential against several strains of SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Células CACO-2 , Humanos , Pandemias , Peptidil-Dipeptidasa A/genética
10.
J Med Chem ; 64(24): 18010-18024, 2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-34870992

RESUMEN

Most enveloped viruses rely on the host cell endoplasmic reticulum (ER) quality control (QC) machinery for proper folding of glycoproteins. The key ER α-glucosidases (α-Glu) I and II of the ERQC machinery are attractive targets for developing broad-spectrum antivirals. Iminosugars based on deoxynojirimycin have been extensively studied as ER α-glucosidase inhibitors; however, other glycomimetic compounds are less established. Accordingly, we synthesized a series of N-substituted derivatives of valiolamine, the iminosugar scaffold of type 2 diabetes drug voglibose. To understand the basis for up to 100,000-fold improved inhibitory potency, we determined high-resolution crystal structures of mouse ER α-GluII in complex with valiolamine and 10 derivatives. The structures revealed extensive interactions with all four α-GluII subsites. We further showed that N-substituted valiolamines were active against dengue virus and SARS-CoV-2 in vitro. This study introduces valiolamine-based inhibitors of the ERQC machinery as candidates for developing potential broad-spectrum therapeutics against the existing and emerging viruses.


Asunto(s)
Antivirales/farmacología , Inhibidores de Glicósido Hidrolasas/farmacología , Iminoazúcares/farmacología , Inositol/análogos & derivados , alfa-Glucosidasas/metabolismo , Animales , Antivirales/síntesis química , Antivirales/metabolismo , Sitios de Unión , Chlorocebus aethiops , Cristalografía por Rayos X , Virus del Dengue/efectos de los fármacos , Retículo Endoplásmico/enzimología , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/metabolismo , Humanos , Iminoazúcares/síntesis química , Iminoazúcares/metabolismo , Inositol/síntesis química , Inositol/metabolismo , Inositol/farmacología , Ratones , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Unión Proteica , SARS-CoV-2/efectos de los fármacos , Células Vero , alfa-Glucosidasas/química
12.
J Virol ; 94(24)2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32999033

RESUMEN

Chikungunya virus (CHIKV) is an arthritogenic alphavirus that causes debilitating musculoskeletal disease. CHIKV displays broad cell, tissue, and species tropism, which may correlate with the attachment factors and entry receptors used by the virus. Cell surface glycosaminoglycans (GAGs) have been identified as CHIKV attachment factors. However, the specific types of GAGs and potentially other glycans to which CHIKV binds and whether there are strain-specific differences in GAG binding are not fully understood. To identify the types of glycans bound by CHIKV, we conducted glycan microarray analyses and discovered that CHIKV preferentially binds GAGs. Microarray results also indicate that sulfate groups on GAGs are essential for CHIKV binding and that CHIKV binds most strongly to longer GAG chains of heparin and heparan sulfate. To determine whether GAG binding capacity varies among CHIKV strains, a representative strain from each genetic clade was tested. While all strains directly bound to heparin and chondroitin sulfate in enzyme-linked immunosorbent assays (ELISAs) and depended on heparan sulfate for efficient cell binding and infection, we observed some variation by strain. Enzymatic removal of cell surface GAGs and genetic ablation that diminishes GAG expression reduced CHIKV binding and infectivity of all strains. Collectively, these data demonstrate that GAGs are the preferred glycan bound by CHIKV, enhance our understanding of the specific GAG moieties required for CHIKV binding, define strain differences in GAG engagement, and provide further evidence for a critical function of GAGs in CHIKV cell attachment and infection.IMPORTANCE Alphavirus infections are a global health threat, contributing to outbreaks of disease in many parts of the world. Recent epidemics caused by CHIKV, an arthritogenic alphavirus, resulted in more than 8.5 million cases as the virus has spread into new geographic regions, including the Western Hemisphere. CHIKV causes disease in the majority of people infected, leading to severe and debilitating arthritis. Despite the severity of CHIKV disease, there are no licensed therapeutics. Since attachment factors and receptors are determinants of viral tropism and pathogenesis, understanding these virus-host interactions can enhance our knowledge of CHIKV infection. We analyzed over 670 glycans and identified GAGs as the main glycan bound by CHIKV. We defined specific GAG components required for CHIKV binding and assessed strain-specific differences in GAG binding capacity. These studies provide insight about cell surface molecules that CHIKV binds, which could facilitate the development of antiviral therapeutics targeting the CHIKV attachment step.


Asunto(s)
Virus Chikungunya/fisiología , Glicosaminoglicanos/metabolismo , Heparina/metabolismo , Acoplamiento Viral , Animales , Artritis , Línea Celular , Fiebre Chikungunya/virología , Glucuronosiltransferasa/genética , Heparitina Sulfato/metabolismo , Humanos , Polisacáridos/metabolismo , Tropismo Viral
13.
Antiviral Res ; 184: 104881, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32768411

RESUMEN

N-linked glycosylation is the most common form of protein glycosylation and is required for the proper folding, trafficking, and/or receptor binding of some host and viral proteins. As viruses lack their own glycosylation machinery, they are dependent on the host's machinery for these processes. Certain iminosugars are known to interfere with the N-linked glycosylation pathway by targeting and inhibiting α-glucosidases I and II in the endoplasmic reticulum (ER). Perturbing ER α-glucosidase function can prevent these enzymes from removing terminal glucose residues on N-linked glycans, interrupting the interaction between viral glycoproteins and host chaperone proteins that is necessary for proper folding of the viral protein. Iminosugars have demonstrated broad-spectrum antiviral activity in vitro and in vivo against multiple viruses. This review discusses the broad activity of iminosugars against Flaviviridae. Iminosugars have shown favorable activity against multiple members of the Flaviviridae family in vitro and in murine models of disease, although the activity and mechanism of inhibition can be virus-specfic. While iminosugars are not currently approved for the treatment of viral infections, their potential use as future host-targeted antiviral (HTAV) therapies continues to be investigated.


Asunto(s)
Infecciones por Flaviviridae/tratamiento farmacológico , Flaviviridae/efectos de los fármacos , Inhibidores de Glicósido Hidrolasas , Glicosilación/efectos de los fármacos , Iminoazúcares/farmacología , Proteínas Virales/metabolismo , Animales , Antivirales/farmacología , Flaviviridae/genética , Interacciones Microbiota-Huesped , Humanos , Iminoazúcares/química , Ratones , alfa-Glucosidasas
14.
J Med Chem ; 63(8): 4205-4214, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32227946

RESUMEN

Influenza and dengue viruses present a growing global threat to public health. Both viruses depend on the host endoplasmic reticulum (ER) glycoprotein folding pathway. In 2014, Sadat et al. reported two siblings with a rare genetic defect in ER α-glucosidase I (ER Glu I) who showed resistance to viral infections, identifying ER Glu I as a key antiviral target. Here, we show that a single dose of UV-4B (the hydrochloride salt form of N-(9'-methoxynonyl)-1-deoxynojirimycin; MON-DNJ) capable of inhibiting Glu I in vivo is sufficient to prevent death in mice infected with lethal viral doses, even when treatment is started as late as 48 h post infection. The first crystal structure of mammalian ER Glu I will constitute the basis for the development of potent and selective inhibitors. Targeting ER Glu I with UV-4B-derived compounds may alter treatment paradigms for acute viral disease through development of a single-dose therapeutic regime.


Asunto(s)
Dengue/prevención & control , Retículo Endoplásmico/efectos de los fármacos , Inhibidores de Glicósido Hidrolasas/administración & dosificación , Gripe Humana/prevención & control , alfa-Glucosidasas , Animales , Dengue/tratamiento farmacológico , Dengue/enzimología , Virus del Dengue/efectos de los fármacos , Virus del Dengue/enzimología , Relación Dosis-Respuesta a Droga , Retículo Endoplásmico/enzimología , Humanos , Gripe Humana/tratamiento farmacológico , Gripe Humana/enzimología , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Estructura Secundaria de Proteína , alfa-Glucosidasas/metabolismo
15.
Antimicrob Agents Chemother ; 63(12)2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31548183

RESUMEN

Burkholderia pseudomallei (B. pseudomallei), the etiological agent of melioidosis, is a Gram-negative bacterium with additional concern as a biothreat pathogen. The mortality rate from B. pseudomallei varies depending on the type of infection and extent of available health care, but in the case of septicemia left untreated it can range from 50 - 90%. Current therapy for melioidosis is biphasic, consisting of parenteral acute-phase treatment for two weeks or longer, followed by oral eradication-phase treatment lasting several months. An effective oral therapeutic for outpatient treatment of acute-phase melioidosis is needed. GC-072 is a potent, 4-oxoquinolizine antibiotic with selective inhibitory activity against bacterial topoisomerases. GC-072 has demonstrated in vitro potency against susceptible and drug-resistant strains of B. pseudomallei and is also active against Burkholderia mallei, Bacillus anthracis, Yersinia pestis, and Francisella tularensis GC-072 is bactericidal both extra- and intracellularly, with rapid killing noted within a few hours and reduced development of resistance compared to ceftazidime. GC-072, delivered intragastrically to mimic oral administration, promoted dose-dependent survival in mice using lethal inhalational models of B. pseudomallei infection following exposure to a 24 or 339 LD50 challenge with B. pseudomallei strain 1026b. Overall, GC-072 appears to be a strong candidate for first-line, oral treatment of melioidosis.

16.
Sci Rep ; 9(1): 7484, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31097731

RESUMEN

Development of antiviral drug resistance is a continuous concern for viruses with high mutation rates such as influenza. The use of antiviral drugs targeting host proteins required for viral replication is less likely to result in the selection of resistant viruses than treating with direct-acting antivirals. The iminosugar UV-4B is a host-targeted glucomimetic that inhibits endoplasmic reticulum α-glucosidase I and II enzymes resulting in improper glycosylation and misfolding of viral glycoproteins. UV-4B has broad-spectrum antiviral activity against diverse viruses including dengue and influenza. To examine the ability of influenza virus to develop resistance against UV-4B, mouse-adapted influenza virus was passaged in mice in the presence or absence of UV-4B and virus isolated from lungs was used to infect the next cohort of mice, for five successive passages. Deep sequencing was performed to identify changes in the viral genome during passaging in the presence or absence of UV-4B. Relatively few minor variants were identified within each virus and the ratio of nonsynonymous to synonymous (dN/dS) substitutions of minor variants confirmed no apparent positive selection following sustained exposure to UV-4B. Three substitutions (one synonymous in PB2, one nonsynonymous in M and PA each) were specifically enriched (>3%) in UV-4B-treated groups at passage five. Recombinant viruses containing each individual or combinations of these nonsynonymous mutations remained sensitive to UV-4B treatment in mice. Overall, these data provide evidence that there is a high genetic barrier to the generation and selection of escape mutants following exposure to host-targeted iminosugar antivirals.


Asunto(s)
Antivirales/farmacología , Farmacorresistencia Viral/genética , Inhibidores de Glicósido Hidrolasas/farmacología , Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/virología , Animales , Femenino , Genoma Viral , Virus de la Influenza A/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Mutación , Recombinación Genética , Selección Genética
17.
J Infect Dis ; 218(suppl_5): S553-S564, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29939318

RESUMEN

Background: Several vaccine platforms have been successfully evaluated for prevention of Ebola virus (EBOV) disease (EVD) in nonhuman primates and humans. Despite remarkable efficacy by multiple vaccines, the immunological correlates of protection against EVD are incompletely understood. Methods: We systematically evaluated the antibody response to various EBOV proteins in 79 nonhuman primates vaccinated with various EBOV vaccine platforms. We evaluated the serum immunoglobulin (Ig)G titers against EBOV glycoprotein (GP), the ability of the vaccine-induced antibodies to bind GP at acidic pH or to displace ZMapp, and virus neutralization titers. The correlation of these outcomes with survival from EVD was evaluated by appropriate statistical methods. Results: Irrespective of the vaccine platform, protection from EVD strongly correlated with anti-GP IgG titers. The GP-directed antibody levels required for protection in animals vaccinated with virus-like particles (VLPs) lacking nucleoprotein (NP) was significantly higher than animals immunized with NP-containing VLPs or adenovirus-expressed GP, platforms that induce strong T-cell responses. Furthermore, protective immune responses correlated with anti-GP antibody binding strength at acidic pH, neutralization of GP-expressing pseudovirions, and the ability to displace ZMapp components from GP. Conclusions: These findings suggest key quantitative and qualitative attributes of antibody response to EVD vaccines as potential correlates of protection.


Asunto(s)
Anticuerpos Antivirales/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Vacunación , Animales , Anticuerpos Antivirales/sangre , Vacunas contra el Virus del Ébola/inmunología , Glicoproteínas/inmunología , Fiebre Hemorrágica Ebola/mortalidad , Concentración de Iones de Hidrógeno , Macaca fascicularis , Nucleoproteínas/inmunología , Virión/inmunología
18.
Antiviral Res ; 138: 22-31, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27908828

RESUMEN

Iminosugars are host-directed antivirals with broad-spectrum activity. The iminosugar, N-butyl-deoxynojirimycin (NB-DNJ or Miglustat®), is used in humans for treatment of Gaucher's disease and has mild antiviral properties. More potent analogs of NB-DNJ have been generated and have demonstrated activity against a variety of viruses including flaviviruses, influenza, herpesviruses and filoviruses. In the current study, a panel of analogs based on NB-DNJ was analyzed for activity against Ebola (EBOV) and Marburg viruses (MARV). The antiviral activity of NB-DNJ (UV-1), UV-2, UV-3, UV-4 and UV-5 against both EBOV and MARV was demonstrated in Vero cells. Subsequent studies to examine the activity of UV-4 and UV-5 using rodent models of EBOV and MARV were performed. In vivo efficacy studies provided inconsistent data following treatment with iminosugars using filovirus mouse models. A tolerability study in nonhuman primates demonstrated that UV-4 could be administered at much higher dose levels than rodents. Since UV-4 was active in vitro, had been demonstrated to be active against influenza and dengue in vivo, and was being tested in a Phase 1 clinical trial, a small proof-of-concept nonhuman primate trial was performed to determine whether this antiviral candidate could provide clinical benefit to EBOV-infected individuals. Administration of UV-4B did not provide a clinical or survival benefit to macaques infected with EBOV-Makona; however, dosing of animals was not optimal in this study. Efficacy may be improved by thrice daily dosing (e.g. by nasogastric tube feeding) to match the efficacious dosing regimens demonstrated against dengue and influenza viruses.


Asunto(s)
Antivirales/farmacología , Antivirales/uso terapéutico , Ebolavirus/efectos de los fármacos , Iminoazúcares/farmacología , Iminoazúcares/uso terapéutico , Marburgvirus/efectos de los fármacos , 1-Desoxinojirimicina/administración & dosificación , 1-Desoxinojirimicina/agonistas , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/farmacología , 1-Desoxinojirimicina/uso terapéutico , Animales , Antivirales/administración & dosificación , Antivirales/química , Chlorocebus aethiops , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Iminoazúcares/administración & dosificación , Iminoazúcares/química , Macaca , Ratones , Modelos Animales , Células Vero
19.
Clin Vaccine Immunol ; 23(12): 918-925, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27707765

RESUMEN

Staphylococcus aureus produces several enterotoxins and superantigens, exposure to which can elicit profound toxic shock. A recombinant staphylococcal enterotoxin B (rSEB) containing 3 distinct mutations in the major histocompatibility complex class II binding site was combined with an alum adjuvant (Alhydrogel) and used as a potential parenteral vaccine named STEBVax. Consenting healthy adult volunteers (age range, 23 to 38 years) participated in a first-in-human open-label dose escalation study of parenteral doses of STEBVax ranging from 0.01 µg up to 20 µg. Safety was assessed by determination of the frequency of adverse events and reactogenicity. Immune responses to the vaccination were determined by measurement of anti-staphylococcal enterotoxin B (anti-SEB) IgG by enzyme-linked immunosorbent assay and a toxin neutralization assay (TNA). Twenty-eight participants were enrolled in 7 dosing cohorts. All doses were well tolerated. The participants exhibited heterogeneous baseline antibody titers. More seroconversions and a faster onset of serum anti-SEB IgG toxin-neutralizing antibodies were observed by TNA with increasing doses of STEBVax. There was a trend for a plateau in antibody responses with doses of STEBVax of between 2.5 and 20 µg. Among the participants vaccinated with 2.5 µg to 20 µg of STEBVax, ∼93% seroconverted for SEB toxin-neutralizing antibody. A strong correlation between individual SEB-specific serum IgG antibody titers and the neutralization of gamma interferon production was found in vitro STEBvax appeared to be safe and immunogenic, inducing functional toxin-neutralizing antibodies. These data support its continued clinical development. (This study has been registered at ClinicalTrials.gov under registration no. NCT00974935.).


Asunto(s)
Anticuerpos Antibacterianos/sangre , Enterotoxinas/genética , Enterotoxinas/inmunología , Inmunogenicidad Vacunal , Vacunas Estafilocócicas/efectos adversos , Vacunas Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/química , Adulto , Anticuerpos Antibacterianos/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Relación Dosis-Respuesta Inmunológica , Ensayo de Inmunoadsorción Enzimática , Femenino , Voluntarios Sanos , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Interferón gamma/biosíntesis , Interferón gamma/inmunología , Masculino , Proteínas Recombinantes/inmunología , Vacunas Estafilocócicas/administración & dosificación , Adulto Joven
20.
Hepatology ; 64(6): 1922-1933, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27641232

RESUMEN

Direct-acting antivirals (DAAs) have led to a high cure rate in treated patients with chronic hepatitis C virus (HCV) infection, but this still leaves a large number of treatment failures secondary to the emergence of resistance-associated variants (RAVs). To increase the barrier to resistance, a complementary strategy is to use neutralizing human monoclonal antibodies (HMAbs) to prevent acute infection. However, earlier efforts with the selected antibodies led to RAVs in animal and clinical studies. Therefore, we identified an HMAb that is less likely to elicit RAVs for affinity maturation to increase potency and, more important, breadth of protection. Selected matured antibodies show improved affinity and neutralization against a panel of diverse HCV isolates. Structural and modeling studies reveal that the affinity-matured HMAb mediates virus neutralization, in part, by inducing conformational change to the targeted epitope, and that the maturated light chain is responsible for the improved affinity and breadth of protection. A matured HMAb protected humanized mice when challenged with an infectious HCV human serum inoculum for a prolonged period. However, a single mouse experienced breakthrough infection after 63 days when the serum HMAb concentration dropped by several logs; sequence analysis revealed no viral escape mutation. CONCLUSION: The findings suggest that a single broadly neutralizing antibody can prevent acute HCV infection without inducing RAVs and may complement DAAs to reduce the emergence of RAVs. (Hepatology 2016;64:1922-1933).


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Afinidad de Anticuerpos , Hepacivirus/inmunología , Hepatitis C/prevención & control , Animales , Células Cultivadas , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...